Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 252(Pt 2): 118924, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38631473

RESUMO

Nitrite, as an electron acceptor, plays a good role in denitrifying phosphorus removal (DPR); however, high nitrite concentration has adverse affects on sludge performance. We investigated the precise mechanisms of responses of sludge to high nitrite stress, including surface characteristics, intracellular and extracellular components, microbial and metabolic responses. When the nitrite stress reached 90 mg/L, the sludge settling performance was improved, but the activated sludge was aging. FTIR and XPS analysis revealed a significant increase in the hydrophobicity of the sludge, resulting in improve settling performance. However, the intracellular carbon sources synthesis was inhibited. In addition, the components in the tightly bound extracellular polymeric substances (TB-EPS) of sludge were significantly reduced and indicated the disturb of metabolism. Notably, Exiguobacterium emerged as a new genus when face high nitrite stress that could maintaining survival in hostile environments. Moreover, metabolomic analysis demonstrated strong biological response to nitrite stress further supported above results that include the inhibited of carbohydrate and amino acid metabolism. More importantly, some lipids (PS, PA, LysoPA, LysoPC and LysoPE) were significantly upregulated that related enhanced membrane lipid remodeling. The comprehensive analyses provide novel insights into the high nitrite stress responses mechanisms in activated sludge systems.

2.
Sci Total Environ ; 925: 171785, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38508244

RESUMO

Per- and polyfluoroalkyl substances (PFASs) have garnered considerable scientific and regulatory scrutiny due to their widespread distribution across environments and their potential toxicological impacts on human health. The pedosphere serves as a vital reservoir for these chemicals, significantly determining their environmental trajectory and chemical transformations. This study offers a comprehensive synthesis of the current understanding regarding the adsorption mechanics of PFASs in soil matrices. Due to their unique molecular structure, PFASs predominantly engage in hydrophobic and electrostatic interactions during soil adsorption. This work thoroughly evaluates the influence of various factors on adsorption efficiency, including soil properties, molecular characteristics of PFASs, and the prevailing environmental conditions. The complex nature of soil environments complicates isolating individual impacts on PFAS behavior, necessitating an integrated approach to understanding their environmental destinies better. Through this exploration, we seek to clarify the complex interplay of factors that modulate the adsorption of PFASs in soils, highlighting the urgent need for future research to disentangle the intricate and combined effects that control the environmental behavior of PFAS compounds.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Humanos , Solo/química , Poluentes Químicos da Água/análise , Adsorção , Fluorocarbonos/análise , Estrutura Molecular
3.
J Hazard Mater ; 469: 133817, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38422730

RESUMO

The soil near tailings areas is relatively barren and contaminated by multi-metal(loid)s, seriously threatening the safety of crop production. Here, biochar and nano-hydroxyapatite (nHAP) were combined to improve the sterilized and unsterilized polymetallic contaminated soil, and soil incubation and soybean pot experiments were designed. Results showed that biochar and nHAP not only increased soil C, N, and P but also effectively reduced multi-metal bioavailability, wherein the combined application of the two amendments had the best effect on metal immobilization. The synergistic effect of the two amendments decreased the acid-soluble contents of Co, Cu, Fe, and Pb in rhizosphere soils up to 86.75%, 80.69%, 89.09%, and 96.70%, respectively. The ameliorant reduced the accumulation of metal(loid)s in soybean plants, and rhizosphere microorganisms inhibited the migration of soil metals to plants. Additionally, biochar and nHAP regulated the rhizosphere soil microbial community. The rhizosphere soil of the sterilization group tended to prioritize the restoration of the original dominant bacteria. As, Pb, Fe, Urease, OM, TN, and TP were the critical environmental variables affecting rhizosphere soil bacterial communities. Therefore, combining biochar and nHAP is an environmentally friendly strategy to reduce polymetallic mobility in tailings soil and crops and improve soil microbial community structure.


Assuntos
Pirenos , Poluentes do Solo , Solo , Solo/química , Glycine max , Durapatita/química , Rizosfera , Microbiologia do Solo , Chumbo , Carvão Vegetal/química , Poluentes do Solo/análise
4.
NanoImpact ; 32: 100485, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37778438

RESUMO

Although the toxic effects of two-dimensional nanomaterials (2D-NMs) have been widely reported, the influence of extracellular polymeric substances (EPS) on the environmental fate and risk of 2D-NMs in aquatic environments is largely unknown, and the processes and mechanisms involved remain to be revealed. Herein, we investigated the impact of EPS secreted by microalgae (Chlorella vulgaris (C. vulgaris)) on the environmental transformation and risk of molybdenum disulfide (MoS2). We found that the attachment of EPS increased the thickness of MoS2 (from 2 nm to 5 nm), changed it from a monolayer sheet to a fuzzy multilayer structure, and promoted the formation of defects on MoS2. The blue-shift of the peak associated with the plasmon resonances in the 1 T phase and the generation of electron-hole pairs suggested that EPS altered the surface electronic structure of MoS2. EPS interacted mainly with the S atoms on the 1 T phase, and the attachment of EPS promoted the oxidation of MoS2. The reduction in hydrodynamic diameter (Dh) and the decrease in zeta potential indicated that EPS inhibited the agglomeration behavior of MoS2 and enhanced its dispersion and stability in aqueous media. Notably, EPS reduced the generation of free radicals (superoxide anion (•O2-), singlet oxygen (1O2), and hydroxyl radicals (•OH-)). Furthermore, EPS mitigated the toxicity of MoS2 to C. vulgaris, such as attenuated reduction in biomass and chlorophyll content. Compared to pristine MoS2, MoS2 + BG11 + EPS exhibited weaker oxidative stress, membrane damage and lipid peroxidation. The adsorption of EPS on MoS2 surface reduced the attachment sites of MoS2, making MoS2 less likely to be enriched on the cell surface. The findings have significant contribution for understanding the interactions between EPS and MoS2 in aquatic ecosystems, providing scientific guidance for risk assessment of 2D-NMs.


Assuntos
Chlorella vulgaris , Nanoestruturas , Molibdênio/toxicidade , Matriz Extracelular de Substâncias Poliméricas/química , Ecossistema , Nanoestruturas/toxicidade
5.
Sci Total Environ ; 903: 166790, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37666336

RESUMO

The current selection of biomass feedstock for magnetic biochar (MBC) catalysts is highly blind. Consequently, this study delves into understanding how the types of biomass influence the iron species present in MBC catalysts. The process involved the creation of MBC through simulated impregnation-pyrolysis, utilizing six types of stalks and Fe2O3. The type of iron species significantly impacted magnetic properties and likely influenced catalytic properties of MBC. MBC's iron species type was shaped by the reduction effects of the diverse stalks on Fe2O3. During the pyrolysis, discrepancies were observed in the release of reducing gases and direct reduction for the different stalks. These differences in reduction behavior directly accounted for the distinct reduction effects. To delve deeper, the reduction behavior and effect of the main components of the stalk (hemicellulose, cellulose, and lignin) on Fe2O3 were analyzed, highlighting lignin as the most effective. Nonetheless, the absolute values of Pearson's r between lignin content in the stalk and reduction behavior/effect ranged only from 0.078 to 0.421. In contrast, the values for K, Ca, and Si content in the stalks and their influence on reduction behavior and MBC's reduction/metallization degree ranged from 0.410 to 0.910. The catalytic impacts of K and Ca were confirmed through their incorporation into cotton and reed stalks. The disparities in K, Ca, and Si content among the six stalks appeared to be the primary driver behind the diverse iron species in MBC. This work provides a scientific basis for the rational selection of biomass feedstock for MBC catalysts.

6.
J Hazard Mater ; 458: 131893, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37354717

RESUMO

In this study, graphene-like biochar (IZBC) was prepared by pyrolysis of wheat straw in the presence of catalyst and activator. The formation of graphene in IZBC could be divided into three stages: shell core generation, carburization, and carbon precipitation. When the pyrolysis temperatures were in the ranges of 500-600 â„ƒ, 600-700 â„ƒ, 700-800 â„ƒ and 800-900 â„ƒ, 17%, 32%, 13% and 38% of graphene were produced, respectively. The contribution ratios of graphene by FeCl3, ZnCl2 and HCl were 64%, 23% and 13%, respectively. Moreover, IZBC was filled with porous wavy three-dimensional graphene nanosheets that enabled self-aggregation to be effectively prevented, which was superior to the striped two-dimensional structure. The adsorption of IZBC for dimethoate was a spontaneous exothermic reaction with the adsorption capacity of 980 µmol/g, which was consistent with the pseudo-second-order and intraparticle diffusion models. The adsorption was inhibited by coexisting cations, anions, and humic acid in water. Dimethoate was adsorbed on graphene through embedded separation, with pore filling, cation-π and electrostatic attraction as the key driving forces. In addition, the adsorbed saturated IZBC could be effectively regenerated for many times by 2 mol/L HCl solution.

7.
Sci Total Environ ; 873: 162341, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36828064

RESUMO

Alkaline fermentation can reduce the amount of waste activated sludge and prepare sludge alkaline fermentation liquid (SAFL) rich in short-chain fatty acids (SCFAs), which can be used as a high-quality carbon source for the biological nutrient removal (BNR) process. This review compiles the production method of SAFL and the progress of its application as a BNR carbon source. Compared with traditional carbon sources, SAFL has the advantages of higher efficiency and economy, and different operating conditions can influence the yield and structure of SCFAs in SAFL. SAFL can significantly improve the nutrient removal efficiency of the BNR process. Taking SAFL as the internal carbon source of BNR can simultaneously solve the problem of carbon source shortage and sludge treatment difficulties in wastewater treatment plants, and further reduce the operating cost. However, the alkaline fermentation process results in many refractory organics, ammonia and phosphate in SAFL, which reduces the availability of SAFL as a carbon source. Purifying SCFAs by removing nitrogen and phosphorus, directly extracting SCFAs, or increasing the amount of SCFAs in SAFL by co-fermentation or combining with other pretreatment methods, etc., are effective measures to improve the availability of SAFL.


Assuntos
Carbono , Esgotos , Fermentação , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Fósforo , Nitrogênio , Ácidos Graxos Voláteis , Reatores Biológicos
8.
Environ Sci Technol ; 57(9): 3691-3702, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36821710

RESUMO

Zinc oxide nanoparticles (ZnO NPs), as the highly efficient photocatalysts, could enhance the transformation of biogenic organic phosphorus (OP) to orthophosphate (PO43-) by photodegradation, accelerating eutrophication. Conversely, orthophosphate can also transform ZnO NPs and thus potentially alter their catalytic and chemical properties. Here, we investigated the transformation mechanisms of three biogenic OP compounds and ZnO NPs under ultraviolet light (UV) illumination: inositol phosphates (IHPs), nucleic acids (DNA), and aminoethylphosphonic acid (AEP). The physicochemical characteristics of the resulting products were systematically characterized. Results show that ZnO NPs accelerated the transformation of IHPs, DNA, and AEP to inorganic phosphorus with the direct photolysis efficiencies of 98.14, 87.68, and 51.76%, respectively. The main component of the precipitates remained ZnO NPs, and Zn3(PO4)2 was identified. Zinc phytate was determined in the ZnO NP-IHP system. 31P NMR and FTIR further confirmed that the aquatic phase contained orthophosphate. Photoproduced hydroxyl (·OH) and superoxide (·O2-) were proved to play a dominant role in the OP photomineralization. Furthermore, ZnO NPs significantly enhanced the intensity of ·OH and ·O2- compared to the OP and Zn2+ solution alone. This work explored the light-induced mineralization processes of OP with ZnO NPs indicating that nanophotocatalysts may play a positive role in transformation of OP species in aquatic environments to further contribute to eutrophication.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Fósforo/química , Nanopartículas/química , Fosfatos , Zinco
9.
J Hazard Mater ; 443(Pt A): 130201, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36283215

RESUMO

The comprehensive effect of exogenous pollutants on the dispersal and abundance of antibiotic-resistance genes (ARGs) in the phycosphere, bacterial community and algae-bacteria interaction remains poorly understood. We investigated community structure and abundance of ARGs in free-living (FL) and particle-attached (PA) bacteria in the phycosphere under nanoparticles (silver nanoparticles (AgNPs) and hematite nanoparticles (HemNPs)) and antibiotics (tetracycline and sulfadiazine) stress using high-throughput sequencing and real-time quantitative PCR. Meanwhile, the intrinsic connection of algae-bacteria interaction was explored by transcriptome and metabolome. The results showed that the relative abundance of sulfonamide and tetracycline ARGs in PA and FL bacteria increased 103-129 % and 112-134 %, respectively, under combined stress of nanoparticles and antibiotics. Antibiotics have a greater effect on ARGs than nanoparticles at environmentally relevant concentrations. Proteobacteria, Firmicutes, and Bacteroidetes, as the primary potential hosts of ARGs, were the dominant phyla. Lifestyle, i.e., PA and FL, significantly determined the abundance of ARGs and bacterial communities. Moreover, algae can provide bacteria with nutrients (carbohydrates and amino acids), and can also produce antibacterial substances (fatty acids). This algal-bacterial interaction may indirectly affect the distribution and abundance of ARGs. These findings provide new insights into the distribution and dispersal of ARGs in microalgae-bacteria symbiotic systems.


Assuntos
Nanopartículas Metálicas , Microalgas , Antibacterianos/farmacologia , Antibacterianos/análise , Microalgas/genética , Genes Bacterianos , Prata/toxicidade , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Tetraciclinas
10.
J Environ Manage ; 325(Pt A): 116372, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36252327

RESUMO

Although lakes dominated by macrophytes are conducive to ecological balance, this balance is easily disrupted by excessive nutrients flowing into the lake. However, knowledge of whether excessive nutrients lead to different microbial environmental vulnerabilities in the lake sediment between macrophyte-dominated areas and macrophyte-free areas is a prerequisite for the implementation of targeted protection measures. In this study, we investigated bacterial communities in sediments using high-throughput sequencing of 16S rRNA genes. Our results showed that the sources of total nitrogen (TN) and organic matter (OM) were related to the macrophytes. The structure, drivers, and interspecific associations of bacterial community, which were more susceptible to increased changes in TN and OM, differed significantly between macrophyte-dominated areas and macrophyte-free areas. More precisely, the lake edge, where was occupied by macrophytes, had a higher proportion of deterministic phylogenetic turnover (88.89%) than other sites, as well as a wider ecological niche and a tighter network structure. Further, as the difference in TN increased, the main assembly processes in surface sediments changed from stochastic to deterministic. However, the majority of phyla from the lake edge showed a greater correlation with excessive nutrients, and the selection of the community by excessive nutrients was more obvious at the edge of the lake. In addition, our results demonstrated that the stability of the bacterial community in macrophyte-free areas is greater than in macrophyte-dominated areas, while an excessively high deterministic process ratio and nutrient (TN and OM) concentration significantly reduced bacterial community stability at macrophyte-dominated areas. Taken together, these results provide a better understanding of the effects of excessive nutrients derived from macrophytes on bacterial community patterns, and highlight the importance of avoiding the accumulation of TN and OM in macrophyte-dominated areas to enhance the sustainability of the ecosystem after restoration of lakes with macrophytes.


Assuntos
Lagos , Microbiota , Ecossistema , Sedimentos Geológicos/microbiologia , RNA Ribossômico 16S/genética , Filogenia , Nitrogênio , Bactérias/genética , Nutrientes , China , Fósforo
11.
Environ Res ; 216(Pt 4): 114687, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36356669

RESUMO

In recent years, iron mediated autotrophic denitrification has been a concern because it overcomes the absence of organic carbon and has been successfully used in denitrification for low C/N ratio wastewater. However, there is currently a lack of a more systematic summary of iron-based materials that can be used for denitrification, and no detailed overview about the mechanism of iron mediated autotrophic denitrification has been reported. In this study, the iron materials with different valence states that can be used for denitrification were summarized, and emphasized, as well as the mechanism in different interaction systems were emphasize. In addition, the contribution of various microorganisms in nitrate reduction were analyzed and the effects of operating conditions and water quality were evaluated. Finally, the challenges and shortcomings of the denitrification process were discussed aiming to find better practical engineering applications of iron-based denitrification.


Assuntos
Desnitrificação , Águas Residuárias , Ferro , Reatores Biológicos , Nitrogênio , Nitratos
12.
Sci Total Environ ; 856(Pt 1): 159048, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36162567

RESUMO

Organophosphorus pollutants (OPs), which are compounds containing carbon­phosphorus bonds or phosphate derivatives containing organic groups, have received much attention from researchers because of their persistence in the aqueous environment for long periods of time and the threat they pose to human health. Heterogeneous photocatalysis has been widely applied to the removal of OPs from aqueous solutions due to its better removal effect and environmental friendliness. In this review, the removal of OPs from aqueous matrices by heterogeneous photocatalysis was presented. Herein, the application and the heterogeneous photocatalysis mechanism of OPs were described in detail, and the effects of catalyst types on degradation effect are discussed categorically. In particular, the heterojunction type photocatalyst has the most excellent effect. After that, the photocatalytic degradation pathways of several OPs were summarized, focusing on the organophosphorus pesticides and organophosphorus flame retardants, such as methyl parathion, dichlorvos, dimethoate and chlorpyrifos. The toxicity changes during degradation were evaluated, indicating that the photocatalytic process could effectively reduce the toxicity of OPs. Additionally, the effects of common water matrices on heterogeneous photocatalytic degradation of OPs were also presented. Finally, the challenges and perspectives of heterogeneous photocatalysis removal of OPs are summarized and presented.


Assuntos
Clorpirifos , Poluentes Ambientais , Praguicidas , Humanos , Praguicidas/análise , Compostos Organofosforados , Água
13.
Environ Pollut ; 315: 120368, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36216179

RESUMO

ZnO nanoparticles (ZnO NPs) have been widely used in several fields, and they have the potential to be a novel fertilizer to promote plant growth. For the effective use of ZnO NPs, it is necessary to understand their influence mechanisms and key interactions with the soil physical and biological environment. In this review, we summarize the fate and transport of ZnO NPs applied via soil treatment or foliar spray in plant-soil systems and discuss their positive regulation mechanisms in plants and microbes. The latest research shows that the formation, bioavailability, and location of ZnO NPs experience complicated changes during the transport in soil-plant systems and that this depends on many factors. ZnO NPs can improve plant photosynthesis, nutrient element uptake, enzyme activity, and the related gene expression as well as modulate carbon/nitrogen metabolism, secondary metabolites, and the antioxidant systems in plants. Several microbial groups related to plant growth, disease biocontrol, and nutrient cycling in soil can be altered with ZnO NP treatment. In this work, we present a systematic comparison between ZnO NP fertilizer and conventional zinc salt fertilizer. We also fill several knowledge gaps in current studies with the hope of providing guidance for future research.


Assuntos
Poluentes do Solo , Óxido de Zinco , Óxido de Zinco/metabolismo , Solo , Fertilizantes , Poluentes do Solo/análise , Raízes de Plantas/metabolismo , Plantas/metabolismo
14.
Environ Res ; 215(Pt 2): 114300, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36096166

RESUMO

The emission standards for textile printing and dyeing wastewater are stricter due to serious environmental issues. A novel technology, hydrodynamic cavitation combined with ozone (HC + O3), has attracted wide attention in wastewater advanced treatment, whereas the contaminants removal mechanism and transformation of dissolved organic matter (DOM) were rarely reported. This study investigated the removal efficiency and mechanism of HC + O3. The maximum removal rates of UV254, chrominance, CODCr, and TOC were 64.99%, 91.90%, 32.30%, and 36.67% in 60 min, respectively, at the inlet pressure of 0.15 MPa and O3 dosage of 6.25 mmol/L. The synergetic coefficient of HC + O3 was 2.77. The removal of contaminants was the synergy of 1O2, ·OH and ·O2-, and high molecular weight and strong aromaticity organic matters were degraded effectively. The main components in DOM were tryptophan-like and tyrosine-like, which were effectively removed after HC + O3. Meanwhile, most DOM had decreased to low apparent relative molecular weight (LARMW) compounds. Additionally, the HC + O3 effluent can reach the emission standard in 60 min for 8.07 USD/m3. It can be concluded that HC + O3 is an effective technology for the advanced treatment of industrial wastewater. This study will provide suggestions for the engineering application of HC + O3.


Assuntos
Águas Residuárias , Purificação da Água , Corantes , Matéria Orgânica Dissolvida/química , Hidrodinâmica , Ozônio/química , Têxteis , Águas Residuárias/química , Purificação da Água/métodos
15.
Sci Total Environ ; 844: 157162, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35798102

RESUMO

The binding between water components (dissolved organic matters, anions and cations) and pharmaceuticals influences the migration and transformation of pollutants. Herein, the impact of water matrices on drug degradation, as well as the electrical energy demands during UV, UV/catalysts, UV/O3, UV/H2O2-based, UV/persulfate and UV/chlorine processes were systemically evaluated. The enhancement effects of water constituents are due to the powerful reactive species formation, the recombination reduction of electrons and holes of catalyst and the catalyst regeneration; the inhibition results from the light attenuation, quenching effects of the excited states of target pollutants and reactive species, the stable complexations generation and the catalyst deactivation. The transformation pathways of the same pollutant in various AOPs have high similarities. At the same time, each oxidant also can act as a special nucleophile or electrophile, depending on the functional groups of the target compound. The electrical energy per order (EEO) of drugs degradation may follow the order of EEOUV > EEOUV/catalyst > EEOUV/H2O2 > EEOUV/PS > EEOUV/chlorine or EEOUV/O3. Meanwhile, it is crucial to balance the cost-benefit assessment and toxic by-products formation, and the comparison of the contaminant degradation pathways and productions in the presence of different water matrices is still lacking.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Cloro , Peróxido de Hidrogênio/química , Cinética , Oxirredução , Preparações Farmacêuticas , Raios Ultravioleta , Água , Poluentes Químicos da Água/análise , Purificação da Água/métodos
16.
Life (Basel) ; 12(6)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35743903

RESUMO

The use of black soldier fly (BSF) larvae to recycle various organic materials while producing biomass for use as feed is well established. Variety selection is important from the perspective of application. In the current study, morphometric and life-history traits of a Wuhan-domesticated BSF colony (Wuhan strain) were compared to those of a 'selectively inbred' population (inbred strain, inbred for 10 generations). In terms of morphological characteristics, the results showed that both strains had dichoptic compound eyes, club-shaped antennae, blue halters, and blue-green metallic luster wings with a hexagon discal cell. In both strains, the body and wing length of female adults were slightly larger than those of male adults. The first four larval stages of the BSF occurred rapidly (1-12 days) with transitions across stages resulting in doubling of size for both populations. Selective inbreeding did not alter the life-history traits of the larval exuviate stage in terms of age, size, weight, and feed reduction rate. Overall egg production for the inbred strain was significantly higher (1.5 times greater) than the Wuhan strain. This is explained by increased adult emergence and individual oviposition performance. It was speculated that inbreeding improved the reproductive success of inbred adult female offspring and selection process steadied it. The findings indicate that selective inbreeding could enhance overall oviposition performance and provide a strategy to selectively breed BSF with high egg production for future applications.

17.
Sci Total Environ ; 836: 155652, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35508243

RESUMO

Per- and polyfluoroalkyl substances (PFASs) are a class of persistent organic pollutants widely distributed in aquatic environments. The adsorption and photocatalytic methods have been widely used to remove PFASs in water because of their respective advantages. Still, they have apparent defects when used alone. Therefore, the adsorption and photocatalytic technologies are combined through suitable preparation methods, and the excellent properties of the two are used to synergize the treatment of organic pollutants. This strategy of "concentrating" pollutants and then degrading them in a centralized manner plays an essential role in removing trace PFASs. Nevertheless, a review focusing on this kind of adsorption photocatalyst system is lacking. This review will fill this gap and provide a reference for developing a carbon-based composite photocatalyst. Firstly, different carbon-based composite photocatalysts are reviewed in detail, focusing on the differences in various composite materials' excellent adsorption and catalytic properties. Secondly, the factors influencing the removal effect of carbon-based composite photocatalysts are discussed. Thirdly, the removal mechanism of carbon-based composite photocatalysts is summarized in detail. The removal process involves two steps: adsorption and photodegradation. The adsorption process involves multiple cooperative adsorption mechanisms, and photocatalytic degradation includes oxidative and reductive degradation. Fourthly, the comparison of adsorption-photocatalysis with common treatment techniques (including removal rate, range of adaptation, cost, and the possibility of expanding application) is summarized. Finally, the prospects of carbon-based composite photocatalysts for repairing PFASs are given by evaluating the performance of different composites.


Assuntos
Poluentes Ambientais , Fluorocarbonos , Poluentes Químicos da Água , Adsorção , Carbono , Fluorocarbonos/análise , Água , Poluentes Químicos da Água/análise
18.
J Hazard Mater ; 436: 129045, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35525218

RESUMO

In this study, the metal(loid) fractions in two alkaline iron tailings areas with similar physico-chemical properties and the enrichment ability of dominant plants in these areas were investigated. Additionally, high-throughput sequencing and metagenome analysis were used to examine the rhizosphere microbial community structures and their strategies and potential for carbon fixation, nitrogen metabolism, and metal(loid) resistance in mining areas. Results showed that Salsola collina, Setaria viridis, and Xanthium sibiricum have strong enrichment capacity for As, and the maximum transport factor for Mn can reach 4.01. The richness and diversity of bacteria were the highest in rhizosphere tailings, and the dominant phyla were Proteobacteria, Actinobacteria, Ascomycota, and Thaumarchaeota. The key taxa present in rhizosphere tailings were generally metal(loid) resistant, especially Sphingomonas, Pseudomonas, Nocardioides, and Microbacterium. The reductive citrate cycle was the main carbon fixation pathway of microorganisms in tailings. Rhizosphere microorganisms have evolved a series of survival strategies and can adapt to oligotrophic and metal(loid) polluted mining environments. The results of this study provide a basis for the potential application of plant-microbial in situ remediation of alkaline tailings.


Assuntos
Microbiota , Poluentes do Solo , Bactérias/genética , Ferro/análise , Metais/análise , Mineração , Plantas , Rizosfera , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise
19.
Water Sci Technol ; 85(10): 2869-2881, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35638793

RESUMO

In this paper, the material types were preferentially selected for different kinds of heavy metals, the effect of calcination temperatures on metal adsorption was investigated, and the adsorption mechanism was explored and summarized. The results show that the pseudo-first-order kinetic was better to fit the adsorption of heavy metals. The biomass type and pyrolysis temperature had an effect on the rate at which heavy metals were absorbed. Based on their adsorbed capacity, 350 °C pyrolyzed corn stalk char, 550 °C pyrolyzed peanut shell char, 450 °C pyrolyzed peanut shell char, 450 °C pyrolyzed peanut shell char, and 500 °C pyrolyzed wheat stalk char were shown to be the best adsorbents for Cr2O72-, Cd2+, Cu2+, Zn2+ and Pb2+, respectively. The largest adsorption rate were in the order of Cr6+ (Cr2O72-, 0.5380 /min) > Pb2+ (0.2276 /min) > Cd2+ (0.1354 /min) > Cu2+ (0.1273 /min) > Zn2+ (0.1000 /min), which might be positively related to the ion radius. Meanwhile, the yield of biomass decreased from 43.9% to 29.0% with the increase of pyrolysis temperature from 350 °C to 550 °C. In addition, the specific surface area and functional groups of the biochar, as well as the ionic radius and initial concentration of heavy metals affect the adsorption rate.


Assuntos
Cádmio , Metais Pesados , Adsorção , Carvão Vegetal , Íons , Chumbo , Água
20.
Chemosphere ; 299: 134370, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35318017

RESUMO

The rapidly rising output and mass use of plastics have made plastics pollution a major environmental problem. Since plastics are persistent in the environment, understanding the migration transformation characteristics of plastics is critical. Given the ever-increasing concern about the environmental risks posed by microplastics, their prevalence, fate, abundance and impact have been intensively studied. Most of these investigations focused on the marine environment, but research on freshwater microplastics is less extensive. This article aims to briefly summarize the research progress of freshwater microplastics, identify existing gaps and draw novel conclusions, so as to provide useful information for the research of freshwater microplastics. Using the statistics and analysis of freshwater microplastics studies in 2016-2021, this review systematically discusses microplastics in globally freshwater systems. The biological effects of microplastics on freshwater organisms were discussed as well. Some potential ecological effects of microplastic biofilms were shown, such as climate change and material circulation. More importantly, we present some unique conclusions. For example, the detection of freshwater microplastics is mainly concentrated in natural freshwater systems, while few are concentrated in artificial freshwater systems. In addition, polystyrene is the main mode for testing the biological effects of freshwater microplastics, and polyethene and polypropylene which are the most common in freshwater environments, have not been taken seriously. We also pointed out that studies on advanced freshwater plants in the topic of biological effects of microplastics still need strengthen.


Assuntos
Microplásticos , Poluentes Químicos da Água , Biofilmes , Ecossistema , Monitoramento Ambiental , Água Doce , Microplásticos/toxicidade , Plásticos/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA